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Abstract: The tunneling current in a graphene nanoribbon tunnel field effect transistor (GNR-TFET) has been quantum mechanic-
ally modeled. The tunneling current in the GNR-TFET was compared based on calculations of the Dirac-like equation and
Schrödinger's equation. To calculate the electron transmittance, a numerical approach-namely the transfer matrix method
(TMM)-was employed and the Launder formula was used to compute the tunneling current. The results suggest that the tunnel-
ing currents that were calculated using both equations have similar characteristics for the same parameters, even though they
have different values. The tunneling currents that were calculated by applying the Dirac-like equation were lower than those cal-
culated using Schrödinger's equation.
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1.  Introduction

Following  the  synthesis  of  graphene,  nanoelectronics
have become a popular research topic. Many theoretical and ex-
perimental studies have been carried out and graphene is anti-
cipated  to  be  a  prospective  material  to  substitute  silicon.
Graphene, which is a two-dimensional material that consists of
carbon atoms that forms a hexagonal lattice, has some very in-
teresting  electronic  properties,  such  as  zero  band  gap  (semi-
metal),  high  carrier  mobility[1],  and  long  phase  coherence
length[2].  The band structure of  graphene can be changed by
setting a limit  to its  size.  Graphene with a width smaller  than
its  length  is  known  as  a  graphene  nanoribbon  (GNR),  and  it
can be used in one-dimensional electronic systems[3, 4].  Based
on  the  edge  shape,  there  are  two  types  of  GNRs:  armchair
graphene nanoribbons (AGNRs) and zigzag graphene nanorib-
bons (ZGNRs). AGNRs can be either semi-conductive or metal-
lic in terms of their widths[5, 6], whereas the ZGNRs have metal-
lic properties for all widths. GNRs can be used for various nano-
electronic  devices  using  these  properties,  such  as  field-effect
transistors (FET) and p–n junction diode. In a p–n junction di-
ode, GNRs can be p- or n-type by doping[7] or electrostatically
engineering[8]. In FET, GNRs can be used as a source, drain, and
channel that connect the source and the drain.

Previous  studies  have  modeled  and  simulated  nanoelec-
tronic device characteristics based on GNRs material.  The Dir-
ac-like equation and the Schrödinger equation are used to ex-
plain the behavior of an electron in this material. For a low en-

ergy limit, dispersion relation of electron and hole is linear and
the  effective  electron  mass  is  zero.  Consequently,  the  system
can  be  described  through  the  Dirac-like  equation[9].  This
equation  has  been  used  to  describe  the  traits  of  electronic
devices,  such  as  GNR  p–n  junction[10–12],  GNR  p–n–p  bipolar
junction[13, 14] and  graphene  FET  for  high-frequency  applica-
tion[15].  The  Schrödinger  equation  can  still  be  used  to  calcu-
late and analyze the characteristics of electronic device-based
GNRs. The effective mass of the electrons in the GNRs can be de-
termined by applying an energy-dependent electron effective
mass  relation.  This  equation  has  additionally  been  accus-
tomed  to  describing  the  characteristics  of  electronic  devices,
such  as  GNR  p–n  junction[16] and  GNR-TFET  for  low  power
device application[17–20].

To calculate the tunneling current in the GNR-TFET, some
researchers  have  applied  the  self-consistent  method  to  de-
termine  the  potential  profile  by  solving  the  Poisson’s  equa-
tion paired with Schrödinger’s equation. They then determine
the  transmittance  by  implementing  the  non-equilibrium
Green's  function  formalism[17–19] and  the  WKB  approach[20].
This  paper  reports  the  tunneling  current  in  GNR-TFET  calcu-
lated under the Dirac-like equation.  A self-consistent solution
of Dirac-like equation coupled with Poisson’s equation is used
to determine the potential profile in GNR-TFET. The transfer mat-
rix method (TMM) has been applied to calculate the transmit-
tance and using the Landauer Formula to compute the tunnel-
ing current. The tunneling current has been computed by imple-
menting the TMM[21, 22], and it is suggested that the tunneling
current that was calculated using the TMM is better than what
has been done using the WKB[23].  These results are compared
to  those  obtained  under  the  Schrödinger  equation  with  the
same  procedures  as  Dirac-like  equation.  The  effect  of  gate
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voltage, drain voltage, width of GNR, oxide thickness, and tem-
perature  on  the  tunneling  current  in  GNR-TFET  is  presented
and compared for both calculations.

2.  Theoretical model

Fig.  1(a) depicts  the  device  structure  of  the  n-channel
GNR.  We  used  the  armchair  graphene  nanoribbons  (AGNR)
type and it is doped to be p+, n, and n+ which used as source,
channel  and  drain,  respectively.  By  solving  the  Dirac-like
Hamilton equation, the Poisson’s equation to consider self-con-
sistently,  the  potential  profile  of  GNR-TFET  was  determined.
The z-direction  was  claimed  as  the  finite  difference  method
that was used to discretize the Poisson’s equation and the Dir-
ac-like Hamiltonian along the carrier transport direction,

 

H = vF

[
0 −ih̄∂z− h̄∂x

−ih̄∂z+ h̄∂x 0

]
. (1)

h̄
vF

From  this  equation,  it  can  be  seen  that  is  the  reduced
Planck constant and  is defined as the Fermi velocity. In this
calculation,  we need a guess potential  as an initial  value.  The
solution  of  the  Poisson’s  equation  uses  the  surface  potential
method[24] applied as a guess potential. The potentials at drain
Vd and gate Vg are  fixed.  The iteration process  between Pois-
son’s equation and Dirac-like equation continues until self-con-
sistency is reached. Fig. 1(b) presents the conduction band of
GNR-TFET calculated using the self-consistent method.

The  wave  function  solutions  in  each  region  are  obtained
by applying Eq. (1) to the electron wave function ψ,
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θ1,S,C,D,2 = tan−1(kn/
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where B1, AS, BS, AC, BC, AD, BD and A2 are constants, V is the po-
tential energy, L is the channel length (the source length = the

drain length = L/2), ,

kn  is  the  transverse  momentum,  and  
. Indices S, C, and D suggest the domain in source,

channel, and drain in sequence. The transmittance is calcula-
ted using the TMM following the method in Refs [10, 14, 21–23].
The acquired transmittance is later applied to compute the
Dirac electron tunneling current using Landauer Formula;
 

Id =
2gve

h

E2∫
E1

[
fS(E)− fD(E)

]
T (E)dE, (3)

fS (E) fD (E)

gv gv = 1

where  and  are the Fermi-Dirac energy distribu-
tion functions for electrons in the source and the drain, re-
spectively,   is  the degeneration of  GNR ( ),  h  is  the
Planck constant, E1 and E2 are limit for energy integration and
T(E) is the electron transmittance. The same procedure was

also performed on Schrödinger’s equation.

3.  Calculated result and discussion

The  tunneling  currents  (Id)  as  a  function  of  drain  voltage
(Vd) for various gate voltages (Vg) calculated by using Dirac-like
equation  and  Schrödinger  equation  are  depicted  in Fig.  2(a).
The AGNRs width, channel length L, the insulator (oxide thick-
ness) tox, and the temperature are 5 nm, 20 nm, 1 nm, and 300 K,
respectively.  The tunneling currents calculated by both equa-
tions  indicate  the  same  characteristics  and  the  device  shows
the  metal–oxide–semiconductor  field-effect  transistor  (MOS-
FET) type behavior. It can be seen from the figures that the tun-
neling  currents  initially  escalate  with  the  drain  voltage  and
they are then able to saturate. If the drain voltage increased con-
tinuously with the gate voltage fixed, the number of electrons
that  tunnel  has  not  increased  because  the  valence  band  at
source and the conduction band in channel does not change
with the increase of drain voltage. In this case, the current re-
latively  constant  and  saturation  occurs. Fig.  2(b) reports  the
tunneling currents (Id) as a function of gate voltage for variety
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Fig. 1. (Color online) (a) The device structure of the n-channel GNR-TFET. (b) The conduction band of the GNR-TFET after self-consistency
achieved.
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of drain voltages. Furthermore, the tunneling current goes up
with the gate voltage. While the gate voltage is added, the con-
duction  band  in  channel  is  reduced,  so  the  valence  band  in
source  is  higher  than  the  conduction  band  in  channel.  Elec-
trons stream from valence band at source to conduction band
in  channel.  The  tunneling  current  significantly  mounts  when
the gate voltage escalated.  In  addition,  the tunneling current
calculated using Dirac-like equation was lower than those ob-
tained using Schrödinger’s equation.

Fig.  3(a) displays  the  tunneling  currents  as  a  function  of
drain  voltage  for  different  oxide  thicknesses  based  on
Schrödinger  and  Dirac-like  equation.  We  used  the  gate
voltage  0.1  V  and  the  same  parameters  as  in  the  other  ex-
amples. From this figure, it can be inferred that the tunneling
current  calculated  using  Dirac-like  equation  was  lower  than
those obtained using Schrödinger equation. There are signific-
ant  differences between the tunneling currents  that  were ca-
lculated by using the Dirac-like equation and the Schrödinger
equations  for  the  gate  voltage  0.1  V.  The  tunneling  current
as a function of the drain voltage for diverse oxide thicknesses
based on Dirac-like  equation has  been presented in Fig.  3(b).
The tunneling current increases as the thickness of the oxide de-
creases. When the oxide thickness goes down, the gate capacit-
ance rises. For fixed gate voltage, the amounts of electrons in
the channel  escalate[25].  Thus,  the tunneling current escalates
when the drain voltage is applied. The dependence of the tun-
neling current on the oxide thickness has a similar characterist-
ic to MOSFET, nanowire FET and CNT-FET[26].

Fig.  4(a) demonstrates  the  reliance  of  the  tunneling  cur-
rent  on the  drain  voltage for  different  AGNR widths.  The AG-
NRs  channel  length L,  the  insulator  (oxide  thickness) tox,  the
temperature, and the gate voltage are 20 nm, 1 nm, 300 K, and
0.1  V,  respectively.  It  can  be  seen  that  the  tunneling  current
goes  up  as  the  AGNR  width  increases.  This  happens  because
the  AGNR  band-gap  is  inversely  proportional  to  the  AGNR
width[5, 6].  The  AGNR band-gap fell  when the  AGNR width  in-
creased.  Consequently,  more  electrons  entered  the  conduc-
tion band and the tunneling current increases. It is also found
that  the  tunneling  current  calculated  using  Dirac-like  equa-
tion  is  lower  than  that  obtained  using  Schrödinger  equation.
The tunneling current differences calculated using both equa-
tions  decrease  as  the  AGNR  width  increases.  The  reliance  of
the tunneling current on the gate voltage for various temperat-
ures is shown in Fig. 4(b). It was taken that the drain voltage is
0.1 V.  Both calculations show that the tunneling current goes
down as the temperature increase. The tunneling current is in-
fluenced by electron mobility. In this material, electron mobil-
ity is very high and it changes as the temperature changes. Elec-
tron  mobility  decreases  when  temperature  increases[27, 28].
This happens because at higher temperatures, the lattice vibra-
tions increase and this results in the probability of electrons be-
ing scattered as the lattice gets bigger. So that when the tem-
perature grows, the electron mobility decreases[29].

The results that we have obtained suggest that the tunnel-
ing current from the calculation using Dirac-like equation is al-
ways  smaller  than  the  use  of  Schrödinger’s  equation.  It  is  as-
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Fig. 2. (Color online) (a) The tunneling currents as a function of drain voltage for various gate voltages, (b) The tunneling currents as a function of
gate voltage for various drain voltages.
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Fig. 3. (Color online) (a) The tunneling currents as a function of drain voltage for various oxide thickness for Schrödinger and Dirac-like equation,
(b) The tunneling currents as a function of drain voltage for various oxide thickness for Dirac-like equation.
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sumed that the Fermi velocity and the effective mass of elec-
trons are the contributing factors because they distinguish the
use  of  Dirac-like  and  Schrödinger’s  equations.  The  effect  of
Fermi velocity on the tunneling current characteristics  is  sho-
wn in Fig.  5(a).  We applied Dirac-like equations in  calculating
the tunneling current by taking the Fermi velocity of 106 m/s.
This value is  greater than the electron Fermi velocity in other
materials,  such as metal  and semiconductors,  with a range of
values  104_105 m/s.  The  growing  electron  Fermi  velocity  res-
ults in smaller tunneling currents, while for the electron Fermi
velocity it gets smaller, and the tunneling current that was pro-
duced  by  the  AGNR-TFET  gets  bigger.  When  the  electron
Fermi velocity is 104 m/s (red line), the tunneling current calcu-
lated using a Dirac-like equation is almost the same as the tun-
neling current calculated using Schrödinger’s equation. The dif-
ference in the tunneling current may also be due to the differ-
ent  approximation  of  the  two  equations.  This  result  explains
the difference in the tunneling current resulting from the calcu-
lations using Dirac-like equation and Schrödinger’s equation.

To clarify the results of this calculation, we compared the
modeling data with experimental data. For comparison, we use
the result of the experiment reported by Wang et al., 2008[30].
The comparison of  the tunneling current characteristic  of  the
modeling  and  experimental  result  is  shown  in Fig.  5(b).  The
length and width of the AGNR used were 2 and 267 nm, respect-
ively;  the  drain  voltage  given  was  0.1  V;  and  the  experiment
was carried out at room temperature. The experimental data is
not  exactly  the  same as  the modeling data  but  the tendency
of both has the same pattern. The tunneling current increases

with increasing gate voltage. The tunneling current of the exper-
imental  result  is  smaller  than  the  tunneling  current  from  the
modeling results. At a gate voltage of 1 V, the difference in the
Schrödinger tunneling current with the experimental result is
quite large (almost three orders of magnitude), while the differ-
ence in Dirac-like tunneling current with the experimental res-
ult  is  smaller  (one  order  of  magnitude).  At  a  gate  voltage  of
0.1  V,  which  is  the  working  voltage  of  the  GNR-TFET  device,
the  difference  in  the  tunneling  current  between  the  experi
mental  and  the  calculation  of  the  Dirac-like  equation  falls
(same  order  of  magnitude).  In  the  experimental  device,  the
source  and  drain  use  metal  while  the  channel  uses  AGNR.
When metals are connected to AGNR, a barrier potential exists
in the form of a Schottky barrier potential, which is about half
the GNR bandgap[31].  The width of the AGNR used is  2 nm so
that the band gap energy is around 0.69 eV and the Schottky
barrier is around 0.34 eV. Whereas in the modeled AGNR-TFET
device, the maximum potential barrier is the built-in potential,
which is about 0.31 eV[20, 29]. The difference in potential maxim-
um  barriers  causes  differences  in  tunneling  currents  in  both
the experiment and modeling results.

Based  on  the  results  of  our  calculations,  we  suggest  that
the calculation method used to model  a  real  device depends
on the mobility of carrier (electrons and holes) in the material.
A  Dirac-like  equation  (relativistic)  can  be  used  to  analyze  the
electron transport process in graphene because the charge carri-
ers  in  graphene  resemble  relativistic  particles  with  zero  rest
mass  and  effective  speed  of  around c/300[1, 9],  where c is  the
speed of light in a vacuum. As a result, charge carrier mobility
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Fig. 4. (Color online) (a) The tunneling currents as a function of drain voltage for various AGNR widths. (b) The tunneling currents as a function of
gate voltage for various temperatures.
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Fig. 5. (Color online) (a) Characteristics of tunneling currents on gate voltages resulting from the calculation of Dirac-like equations for variations
in Fermi velocity (b) Comparison of tunneling current calculated by Schrödinger equation, Dirac-like equation and an experiment by Wang,
2008.
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in graphene is very high at around 230 000 cm2V−1s−1 at 5 K[27]

and 185 000 cm2V−1s−1 at 100 K[28]. The value of charge carrier
mobility  in  this  material  is  about  100  times  greater  than  the
value of charge carrier mobility in silicon material. Meanwhile,
Schrödinger’s equation is used to analyze electron transport in
semiconductors  and  metals  (nonrelativistic  particle)  because
electron mobility in the material is not as large as electron mo-
bility in graphene.

4.  Conclusion

In  this  paper,  we  modeled  the  tunneling  current  in
graphene nanoribbon tunnel field effect transistor (GNR-TFET).
The  potential  profile  of  GNR-TFET  is  calculated  and  found  to
be  self-consistent  between  the  Dirac-like  equation  and  Pois-
son’s equation, and also Schrödinger’s equation and Poisson’s
equation as a comparison. The tunneling current and the elec-
tron  transmittance  are  derived  by  implementing  the  transfer
matrix  method (TMM).  For  comparison,  the tunneling current
is  also  calculated  using  the  Schrödinger  equation.  It  is  found
that  the  tunneling  current  increases  with  the  drain  voltage
and it achieves saturation by applying the calculation of both
equations. It has also been found that the AGNR width, the ox-
ide thickness,  and the temperature all  influence the perform-
ance of  the GNR-TFET.  The tunneling currents increase as the
thickness of the oxide decreases and it increases as the AGNR
width  increases.  The  tunneling  current  differences  calculated
using  both  equations  decrease  as  the  AGNR  width  increases.
Raising the temperatures will  decrease the tunneling current.
In  addition,  the  tunneling  current  calculated  using  Dirac-like
equation  is  lower  than  those  obtained  using  Schrödinger’s
equation. The use of the Dirac-like equation for the Fermi velo-
city 104 m/s yields a tunneling current that is close to the res-
ult calculated with Schrodinger’s equation.
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